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Introduction

• Continued challenges for optical flow estimation:
Large motion, illumination changes, and occlusion

• Optical Flow and occlusion estimation: 
well-known chicken and egg problem

Q) How can we resolve their mutual dependency?

• Conventional optical flow approaches:

• Treat occlusions as outliers (violation of the basic optical flow assumptions)

• Asymmetric algorithm + post-processing

• Problem: occasional failures during post-processing are inevitable and irreversible

• Our approach:

• Occlusion estimated in a joint objective

• An integrative, symmetric approach (no post-processing required)

• Jointly estimate forward/backward flow, occlusion maps in both views

• Exploiting two key symmetry properties: forward/backward & occlusion/disocclusion

• Coupling two different problem domains

• Better utilizing the available image evidence

• Leading to a well-balanced solution
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Method

• Objective function: 

• Forward-backward consistency term

• Penalizing motion inconsistency only for visible pixels in both views

• Occlusion-disocclusion symmetry term

• Penalizing occlusion and disocclusion inconsistency

• Optimization (block coordinate descent)

• Estimating H𝑠
𝑓
and H𝑠

𝑏 : discrete multi-label optimization

• Collecting proposal homography motions

• Fusion moves

• Estimating 𝑜𝑡, 𝑜𝑡+1 : binary optimization

• Standard graph cut

𝐸 H𝑓, H𝑏, 𝑜𝑡, 𝑜𝑡+1 = 𝐸𝐷 H𝑓, H𝑏, 𝑜𝑡, 𝑜𝑡+1

+ 𝜆𝑃𝐸𝑃 H𝑓, H𝑏, 𝑜𝑡 , 𝑜𝑡+1

+ 𝜆𝐶𝐸𝐶 H𝑓, H𝑏, 𝑜𝑡, 𝑜𝑡+1

+ 𝜆𝑆𝐸𝑆 𝑜𝑡, 𝑜𝑡+1

Forward-backward consistency term

Data term

Occlusion-disocclusion symmetry term

Pairwise term

H𝑓: Per-superpixel homography for forward motion

H𝑏: Per-superpixel homography for backward motion

𝑜𝑡: Per-pixel occlusion map for the current frame

𝑜𝑡+1: Per-pixel occlusion map for the next frame
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Visible pixels (𝑜𝑝 = 𝟎) Occluded pixels (𝑜𝑝 = 𝟏)

Data term Truncated ternary census transform Constant penalty (avoiding the trivial solution)

Pairwise term Penalizing motion & occlusion status in 8-neighborhood

Consistency term Forward-backward inconsistency penalty 0

Symmetry term Occlusion-disocclusion inconsistency penalty

XOR Operation:
0 ⊙ 0 = 1
0 ⊙ 1 = 0

Experiments

• KITTI Optical Flow 2015

• #1 two-frame based optical flow method
• Lowest flow error rates in occluded regions

• MPI Sintel Flow Dataset

• #2 in the Clean pass 
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* Flow outlier rates

Method
Non-occluded pixels All pixels

Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

Ours (MirrorFlow) 6.24 % 12.95 % 7.46 % 8.93 % 17.07 % 10.29 %

FlowNet2 [1] 7.24 % 5.60 % 6.94 % 10.75 % 8.75 % 10.41 %

SDF [2] 5.75 % 18.38 % 8.04 % 8.61 % 23.01 % 11.01 %

MR-Flow [3] 6.86 % 17.91 % 8.86 % 10.13 % 22.51 % 12.19 %

DCFlow [4] 8.04 % 19.84 % 10.18 % 13.10 % 23.70 % 14.86 %
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* EPE (End-point error)

Method
Final pass Clean pass

EPE all EPE nocc. EPE occ. EPE all EPE nocc. EPE occ.

DCFlow [4] 5.119 2.283 28.228 3.537 1.103 23.394

FlowFieldsCNN [5] 5.363 2.303 30.313 3.778 0.996 26.469

MR-Flow [3] 5.376 2.818 26.235 2.527 0.954 15.365

S2F-IF [6] 5.417 2.549 28.795 3.500 0.988 23.986

RicFlow [7] 5.620 2.765 28.907 3.550 1.264 22.220

Ours (MirrorFlow) 6.071 3.186 29.567 3.316 1.338 19.470

Usage of terms Non-occluded pixels All pixels

Occ/Disocc

symmetry

F/B 

Consistency
Fl-bg Fl-fg Fl-all Fl-bg Fl-fg Fl-all

Yes Yes 6.52 % 11.72 % 7.41 % 9.26 % 13.94 % 9.98 %

Yes No 6.73 % 11.90 % 7.62 % 9.49 % 14.04 % 10.19 % 

No Yes 10.41 % 18.17 % 11.74 % 13.72 % 20.40 % 14.74 %

No No 8.39 % 14.97 % 9.51 % 11.82 % 17.41 % 12.68 % 

KITTI Optical Flow 2015

MPI Sintel Flow Dataset

Conclusions & Future Work

• Our joint, symmetric design yields significant improvements in flow estimation 

accuracy, especially in occluded areas.

• Leading results on public benchmarks even without employing any semantic 
knowledge or learning of appearance descriptors.

• Enabling to handle non-rigid motion, exploiting semantic knowledge, and using 

learned descriptors are natural next steps.

• Ablation study

• The occlusion-disocclusion symmetry 
term contributes the most

• The F/B consistency term boosts the 
quality of the results further, but only 
when the symmetry term is turned on

Consequence of motion
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