

Computer Vision 2017

MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation

Forward optical flow

Introduction

- Continued challenges for optical flow estimation: Large motion, illumination changes, and occlusion
- **Optical Flow** and **occlusion** estimation: well-known chicken and egg problem

Consequence of motion

Outliers (non-existing correspondence)

Q) How can we resolve their mutual dependency?

Conventional optical flow approaches:

- Treat occlusions as **outliers** (violation of the basic optical flow assumptions)
- Asymmetric algorithm + post-processing
- Problem: occasional failures during post-processing are inevitable and irreversible

• Our approach:

- Occlusion estimated in a joint objective
- An integrative, symmetric approach (no post-processing required)
- Jointly estimate forward/backward flow, occlusion maps in both views
- Exploiting two key symmetry properties: forward/backward & occlusion/disocclusion
- Coupling two different problem domains
 - Better utilizing the available image evidence
 - Leading to a well-balanced solution

Acknowledgement. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 307942.

- [1] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. FlowNet 2.0: Evolution of optical flow estimation with deep networks. In CVPR, 2017. [2] M. Bai, W. Luo, K. Kundu, and R. Urtasun. Exploiting semantic information and deep matching for optical flow. In ECCV, 2016.
- [3] J. Wulff, L. Sevilla-Lara, and M. J. Black. Optical flow in mostly rigid scenes. In CVPR, 2017. [4] J. Xu, R. Ranftl, and V. Koltun. Accurate optical flow via direct cost volume processing. In CVPR, 2017.
- [5] C. Bailer, K. Varanasi, and D. Stricker. CNN-based patch matching for optical flow with thresholded hinge embedding loss. In CVPR, 2017.
- [6] Y. Yang and S. Soatto. S2F: Slow-to-fast interpolator flow. In CVPR, 2017.
- [7] Y. Hu, Y. Li, and R. Song. Robust interpolation of correspondences for large displacement optical flow. In CVPR, 2017.

Stefan Roth Junhwa Hur Department of Computer Science, TU Darmstadt

Backward optical flow

Method

Objective function:

 $E_C(\mathbf{H}^f,$

$$E(\mathbf{H}^{f}, \mathbf{H}^{b}, o^{t}, o^{t+1}) = E_{D}(\mathbf{H}^{f}, \mathbf{H}^{b}, o^{t}, o^{t+1}) + \lambda_{P}E_{P}(\mathbf{H}^{f}, \mathbf{H}^{b}, o^{t}, o^{t+1}) + \lambda_{C}E_{C}(\mathbf{H}^{f}, \mathbf{H}^{b}, o^{t}, o^{t+1}) + \lambda_{S}E_{S}(o^{t}, o^{t+1})$$

Data term Pairwise term Forward-backward consistency term Occlusion-disocclusion symmetry term

 \mathbf{H}^{f} : Per-superpixel homography for forward motion \mathbf{H}^{b} : Per-superpixel homography for backward motion o^t: Per-pixel occlusion map for the current frame o^{t+1} : Per-pixel occlusion map for the next frame

 $\mathbf{H}_{s} \in \mathcal{R}^{3 \times 3}$: homography motion per each superpixel

	Visible pixels ($o_p = 0$)	Occluded pixels ($o_p = 1$)				
Data term	Truncated ternary census transform	Constant penalty (avoiding the trivial solu				
Pairwise term	Penalizing motion & occlusion status in 8-neighborhood					
Consistency term	Forward-backward inconsistency penalty	0				
Symmetry term	Occlusion-disocclusion inconsistency penalty					

Forward-backward consistency term

Penalizing motion inconsistency only for visible pixels in both views

$$\mathbf{H}^{b}, o^{t}, o^{t+1} = \sum_{p \in I^{t}} C_{p}^{f} + \sum_{p \in I^{t+1}} C_{p}^{b}$$

$$C_{p}^{f} = \overline{o_{p}^{t}} \overline{o_{p'}^{t+1}} \rho_{C} \left(\left\| p - \mathbf{H}_{s_{p'}}^{b} \mathbf{H}_{s_{p}}^{f} p \right\| \right) \qquad p' = \mathbf{H}_{s_{p}}^{f} p$$

$$C_{p}^{b} = \overline{o_{p}^{t+1}} \overline{o_{p'}^{t}} \rho_{C} \left(\left\| p - \mathbf{H}_{s_{p'}}^{f} \mathbf{H}_{s_{p}}^{b} p \right\| \right) \qquad p' = \mathbf{H}_{s_{p}}^{b} p$$

Occlusion-disocclusion symmetry term

Penalizing occlusion and disocclusion inconsistency

$$E_{S}(o^{t}, o^{t+1}) = \sum_{p \in I^{t}} o_{p}^{t} \odot N_{p}^{t} + \sum_{p \in I^{t+1}} o_{p}^{t+1} \odot N_{p}^{t+1}$$
$$N_{p}^{t+1} = \left| \left\{ p \mid p = \mathbf{H}_{S_{p'}}^{f} p', \quad \forall p' \in I^{t} \right\} \right|$$
$$N_{p}^{t} = \left| \left\{ p \mid p = \mathbf{H}_{S_{p'}}^{b} p', \quad \forall p' \in I^{t+1} \right\} \right|$$
$$(Number of pixels that are mapped to n from warping)$$

umber of pixels that are mapped to p from warping,

H_{s}^{b} disocclusion

- **Optimization (block coordinate descent)** Estimating H_s^f and H_s^b : discrete multi-label optimization
- Collecting proposal homography motions
- Fusion moves

erc

- Estimating o^t , o^{t+1} : binary optimization
 - Standard graph cut

Occlusion map on the current frame

Occlusion map on the next frame

Experiments

KITTI Optical Flow 2015

- #1 two-frame based optical flow method
- Lowest flow error rates in occluded regions

Ground truth optical flow

MPI Sintel Flow Dataset

• #2 in the Clean pass

		-										
ordit -										-7	the contraction of the contracti	
S.P.A.				~			A BAR					
Ground truth optica	al flow	Forward	optical flow	Ва	ckward op	otical flow	Ground truth occlusion map		Occlusi on the cur	on map rent frame	C on	cclus) the r
	Noi	n-occluded p	ixels		All pixels				Final pass			Clea
Niethod	Fl-bg	Fl-fg	Fl-all	Fl-bg	Fl-fg	Fl-all	ινιετησα	EPE all	EPE nocc.	EPE occ.	EPE all	EPE
Ours (MirrorFlow)	<u>6.24</u> %	<u>12.95</u> %	<u>7.46</u> %	<u>8.93</u> %	<u>17.07</u> %	10.29 %	DCFlow [4]	5.119	2.283	28.228	3.537	1.
FlowNet2 [1]	7.24 %	5.60 %	6.94 %	10.75 %	8.75 %	<u>10.41</u> %	FlowFieldsCNN [5]	<u>5.363</u>	<u>2.303</u>	30.313	3.778	0.
SDF [2]	5.75 %	18.38 %	8.04 %	8.61 %	23.01 %	11.01 %	MR-Flow [3]	5.376	2.818	26.235	2.527	0.

22.51 % 12.19 9

* Flow outlier rates

RicFlow [7]

Ours (MirrorFlow)

13.10 % 23.70 % 14.86 %

Ablation study

MR-Flow [3]

DCFlow [4]

The occlusion-disocclusion symmetry term contributes the most

6.86 % 17.91 % 8.86 %

8.04 % 19.84 % 10.18 %

KITTI Optical Flow 2015

10.13 %

The F/B consistency term boosts the quality of the results further, but only when the symmetry term is turned on

Usage o	of terms	Non	-occluded p	ixels		All pixels			
Occ/Disocc symmetry	F/B Consistency	Fl-bg	Fl-fg	Fl-all	Fl-bg	Fl-fg	Fl-all		
Yes	Yes	6.52 %	11.72 %	7.41 %	9.26 %	13.94 %	9.98 %		
Yes	No	<u>6.73 %</u>	<u>11.90 %</u>	<u>7.62 %</u>	<u>9.49 %</u>	<u>14.04 %</u>	<u>10.19 %</u>		
No	Yes	10.41 %	18.17 %	11.74 %	13.72 %	20.40 %	14.74 %		
No	No	8.39 %	14.97 %	9.51 %	11.82 %	17.41 %	12.68 %		

Conclusions & Future Work

- Our joint, symmetric design yields significant improvements in flow estimation accuracy, especially in occluded areas.
- Leading results on public benchmarks even without employing any semantic knowledge or learning of appearance descriptors.
- Enabling to handle non-rigid motion, exploiting semantic knowledge, and using learned descriptors are natural next steps.

 $H^b_{s_{p'}}p'$

XOR Operation $0 \odot 0 = 1$ $0 \odot 1 = 0$

TECHNISCHE UNIVERSITÄT DARMSTADT

ext frame				
n pass				
nocc.	EPE occ.			
103	23.394			
996	26.469			
954	15.365			
<u>988</u>	23.986			
264	22.220			
338	<u>19.470</u>			
PE (End-point error				

3.550

3.316